Search results
Results from the WOW.Com Content Network
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Given a particular eigenvalue λ of the n by n matrix A, define the set E to be all vectors v that satisfy equation , = {: =}. On one hand, this set is precisely the kernel or nullspace of the matrix ( A − λI ).
A Givens rotation acting on a matrix from the left is a row operation, moving data between rows but always within the same column. Unlike the elementary operation of row-addition, a Givens rotation changes both of the rows addressed by it.
These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.
In numerical linear algebra, the Rayleigh–Ritz method is commonly [12] applied to approximate an eigenvalue problem = for the matrix of size using a projected matrix of a smaller size <, generated from a given matrix with orthonormal columns. The matrix version of the algorithm is the most simple:
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
The Jacobi Method has been generalized to complex Hermitian matrices, general nonsymmetric real and complex matrices as well as block matrices. Since singular values of a real matrix are the square roots of the eigenvalues of the symmetric matrix = it can also be used
Also (in the maximum theorem) subsequent eigenvalues and eigenvectors are found by induction and orthogonal to each other; therefore, = with , =, <. The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if || x || = 1 is a hypersphere then the matrix A deforms that hypersphere into an ellipsoid .