enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    two iterations of the Givens rotation (note that the Givens rotation algorithm used here differs slightly from above) yield an upper triangular matrix in order to compute the QR decomposition. In order to form the desired matrix, zeroing elements (2, 1) and (3, 2) is required; element (2, 1) is zeroed first, using a rotation matrix of:

  4. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    The Jacobi Method has been generalized to complex Hermitian matrices, general nonsymmetric real and complex matrices as well as block matrices. Since singular values of a real matrix are the square roots of the eigenvalues of the symmetric matrix = it can also be used

  5. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Given a particular eigenvalue λ of the n by n matrix A, define the set E to be all vectors v that satisfy equation , = {: =}. On one hand, this set is precisely the kernel or nullspace of the matrix ( A − λI ).

  7. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  8. Muscle cramps are a pain. These expert-approved tips can help ...

    www.aol.com/muscle-cramps-pain-expert-approved...

    At one point or another, we’ve all experienced the unexpected, intense pain of a muscle cramp. Muscle cramps, also known as muscle spasms or charley horses, are the involuntary contraction of ...

  9. Jacobi rotation - Wikipedia

    en.wikipedia.org/wiki/Jacobi_rotation

    In numerical linear algebra, a Jacobi rotation is a rotation, Q kℓ, of a 2-dimensional linear subspace of an n-dimensional inner product space, chosen to zero a symmetric pair of off-diagonal entries of an n×n real symmetric matrix, A, when applied as a similarity transformation: