enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag ...

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    In this case, the terminal velocity increases to about 320 km/h (200 mph or 90 m/s), [citation needed] which is almost the terminal velocity of the peregrine falcon diving down on its prey. [4] The same terminal velocity is reached for a typical .30-06 bullet dropping downwards—when it is returning to earth having been fired upwards, or ...

  4. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    With air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (190 km/h or 118 mph [4]) for a human skydiver. The terminal velocity depends on many factors including mass, drag coefficient, and relative surface area and will only be achieved if the fall is from ...

  5. Speed skydiving - Wikipedia

    en.wikipedia.org/wiki/Speed_skydiving

    The speed, achieved by the human body in free fall, is a function of several factors; including the body's mass, orientation, and skin area and texture. [1] In stable, belly-to-earth position, terminal velocity is about 200 km/h (120 mph). Stable freefall head down position has a terminal speed of 240–290 km/h (around 150–180 mph).

  6. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In short, terminal velocity is higher for larger creatures, and thus potentially more deadly. A creature such as a mouse falling at its terminal velocity is much more likely to survive impact with the ground than a human falling at its terminal velocity. [18]

  7. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  8. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  9. Terminal ballistics - Wikipedia

    en.wikipedia.org/wiki/Terminal_ballistics

    Terminal ballistics is a sub-field of ballistics concerned with the behavior and effects of a projectile when it hits and transfers its energy to a target. This field is usually cited in forensic ballistics. Bullet design (as well as the velocity of impact) largely determines the effectiveness of penetration. [1]