enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Judea Pearl defines a causal model as an ordered triple ,, , where U is a set of exogenous variables whose values are determined by factors outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set of structural equations that express the value of each endogenous variable as a function of the values of the other variables in U ...

  3. Rubin causal model - Wikipedia

    en.wikipedia.org/wiki/Rubin_causal_model

    Rubin defines a causal effect: Intuitively, the causal effect of one treatment, E, over another, C, for a particular unit and an interval of time from to is the difference between what would have happened at time if the unit had been exposed to E initiated at and what would have happened at if the unit had been exposed to C initiated at : 'If an hour ago I had taken two aspirins instead of ...

  4. Bradford Hill criteria - Wikipedia

    en.wikipedia.org/wiki/Bradford_Hill_criteria

    The argument proposes that there are different motives behind defining causality; the Bradford Hill criteria applied to complex systems such as health sciences are useful in prediction models where a consequence is sought; explanation models as to why causation occurred are deduced less easily from Bradford Hill criteria because the instigation ...

  5. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed.

  6. Lord's paradox - Wikipedia

    en.wikipedia.org/wiki/Lord's_paradox

    [1] [2] [3] Holland & Rubin (1983) used these examples to illustrate how there may be multiple valid descriptive comparisons in the data, but causal conclusions require an underlying (untestable) causal model. [4] Judea Pearl used these examples to illustrate how graphical causal models resolve the issue of when control for baseline status is ...

  7. Mediation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mediation_(statistics)

    Simple mediation model. The independent variable causes the mediator variable; the mediator variable causes the dependent variable. In statistics, a mediation model seeks to identify and explain the mechanism or process that underlies an observed relationship between an independent variable and a dependent variable via the inclusion of a third hypothetical variable, known as a mediator ...

  8. Causal analysis - Wikipedia

    en.wikipedia.org/wiki/Causal_analysis

    Causal analysis is the field of experimental design and statistics pertaining to establishing cause and effect. [1] Typically it involves establishing four elements: correlation, sequence in time (that is, causes must occur before their proposed effect), a plausible physical or information-theoretical mechanism for an observed effect to follow from a possible cause, and eliminating the ...

  9. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    Figure 1: Unidentified model with latent variables (and ) shown explicitly Figure 2: Unidentified model with latent variables summarized. Figure 1 is a causal graph that represents this model specification. Each variable in the model has a corresponding node or vertex in the graph.