enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them: The set of all eigenvectors of a linear transformation, each paired with its corresponding eigenvalue, is called the eigensystem of that transformation. [7] [8]

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3, the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ, e −iθ.

  6. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  7. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    In numerical linear algebra, the Jacobi eigenvalue algorithm is an iterative method for the calculation of the eigenvalues and eigenvectors of a real symmetric matrix ...

  8. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    Hence, its eigenvalues are real. If we replace the strict inequality by a k,k+1 a k+1,k ≥ 0, then by continuity, the eigenvalues are still guaranteed to be real, but the matrix need no longer be similar to a Hermitian matrix. [3] The set of all n × n tridiagonal matrices forms a 3n-2 dimensional vector space.

  9. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.