enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  3. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    where c 1 = ⁠ 1 / a 1 ⁠, c 2 = ⁠ a 1 / a 2 ⁠, c 3 = ⁠ a 2 / a 1 a 3 ⁠, and in general c n+1 = ⁠ 1 / a n+1 c n ⁠. Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence {d i} to make each partial denominator a 1:

  4. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  5. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  6. Lowest common denominator - Wikipedia

    en.wikipedia.org/wiki/Lowest_common_denominator

    The expression "lowest common denominator" is used to describe (usually in a disapproving manner) a rule, proposal, opinion, or media that is deliberately simplified so as to appeal to the largest possible number of people. [3]

  7. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    For example, if the polynomial used to define the finite field GF(2 8) is p = x 8 + x 4 + x 3 + x + 1, and a = x 6 + x 4 + x + 1 is the element whose inverse is desired, then performing the algorithm results in the computation described in the following table.

  8. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    For example, ⁠ 1 / 4 ⁠, ⁠ 5 / 6 ⁠, and ⁠ −101 / 100 ⁠ are all irreducible fractions. On the other hand, ⁠ 2 / 4 ⁠ is reducible since it is equal in value to ⁠ 1 / 2 ⁠, and the numerator of ⁠ 1 / 2 ⁠ is less than the numerator of ⁠ 2 / 4 ⁠. A fraction that is reducible can be reduced by dividing both the numerator ...

  9. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Furthermore, if b 1, b 2 are both coprime with a, then so is their product b 1 b 2 (i.e., modulo a it is a product of invertible elements, and therefore invertible); [6] this also follows from the first point by Euclid's lemma, which states that if a prime number p divides a product bc, then p divides at least one of the factors b, c.