enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  3. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    Indeed, two's complement is used in most modern computers to represent signed numbers. Complement the result if there is no carry out of the most significant digit (an indication that x was less than y). This is easier to implement with digital circuits than comparing and swapping the operands. But since taking the radix complement requires ...

  4. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Addition of a pair of two's-complement integers is the same as addition of a pair of unsigned numbers (except for detection of overflow, if that is done); the same is true for subtraction and even for N lowest significant bits of a product (value of multiplication). For instance, a two's-complement addition of 127 and −128 gives the same ...

  5. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    The overflow flag is thus set when the most significant bit (here considered the sign bit) is changed by adding two numbers with the same sign (or subtracting two numbers with opposite signs). Overflow cannot occur when the sign of two addition operands are different (or the sign of two subtraction operands are the same). [1]

  6. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.

  7. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  8. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages. It is summarized as: [2] [5] Parentheses; Exponentiation; Multiplication and division; Addition and subtraction

  9. Arithmetic logic unit - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_logic_unit

    Arithmetic shift: the operand is treated as a two's complement integer, meaning that the most significant bit is a "sign" bit and is preserved. Logical shift: a logic zero is shifted into the operand. This is used to shift unsigned integers.