Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
For example, one of the solutions that may be found by EM in a mixture model involves setting one of the components to have zero variance and the mean parameter for the same component to be equal to one of the data points. The convergence of expectation-maximization (EM)-based algorithms typically requires continuity of the likelihood function ...
A more general class of regression-based multi-fidelity methods are Bayesian approaches, e.g. Bayesian linear regression, [3] Gaussian mixture models, [10] [11] Gaussian processes, [12] auto-regressive Gaussian processes, [2] or Bayesian polynomial chaos expansions. [4]
In the sum, given an observed signal mixture , the corresponding set of extracted signals and source signal model = ′, we can find the optimal unmixing matrix , and make the extracted signals independent and non-gaussian. Like the projection pursuit situation, we can use gradient descent method to find the optimal solution of the unmixing matrix.
The mixture of experts, being similar to the gaussian mixture model, can also be trained by the expectation-maximization algorithm, just like gaussian mixture models. Specifically, during the expectation step, the "burden" for explaining each data point is assigned over the experts, and during the maximization step, the experts are trained to ...
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.
However, these algorithms put an extra burden on the user: for many real data sets, there may be no concisely defined mathematical model (e.g. assuming Gaussian distributions is a rather strong assumption on the data). Gaussian mixture model clustering examples