Search results
Results from the WOW.Com Content Network
Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting.
An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a query.
There is a distinction between aggregate data and individual data. Aggregate data refers to individual data that are averaged by geographic area, by year, by service agency, or by other means. [ 2 ] Individual data are disaggregated individual results and are used to conduct analyses for estimation of subgroup differences.
The information is packaged into aggregate reports and then sold to businesses, as well as to local, state, and government agencies. This information can also be useful for marketing purposes. In the United States, many data brokers' activities fall under the Fair Credit Reporting Act (FCRA) which regulates consumer reporting agencies .
The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices. In the Pascal program, those elements are denoted A[1,1], A[1,2], A[2,1], …, A[4,2]. [3] Special array types are often defined by the language's standard libraries.
The arrays are heterogeneous: a single array can have keys of different types. PHP's associative arrays can be used to represent trees, lists, stacks, queues, and other common data structures not built into PHP. An associative array can be declared using the following syntax:
In database management, an aggregate function or aggregation function is a function where multiple values are processed together to form a single summary statistic. (Figure 1) Entity relationship diagram representation of aggregation. Common aggregate functions include: Average (i.e., arithmetic mean) Count; Maximum; Median; Minimum; Mode ...
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.