enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...

  3. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 (metres per second squared, which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet per second per second") approximately. A coherent set of units for g, d, t and v is essential.

  5. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The value of this standard acceleration due to gravity is equal to the acceleration due to gravity at the International Bureau (alongside the Pavillon de Breteuil) divided by 1.0003322, the theoretical coefficient required to convert to a latitude of 45° at sea level. [5]

  6. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Gravity field surrounding Earth from a macroscopic perspective. Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass.

  8. Acceleration due to gravity - Wikipedia

    en.wikipedia.org/wiki/Acceleration_due_to_gravity

    Gravitational acceleration, the acceleration caused by the gravitational attraction of massive bodies in general; Gravity of Earth, the acceleration caused by the combination of gravitational attraction and centrifugal force of the Earth; Standard gravity, or g, the standard value of gravitational acceleration at sea level on Earth

  9. Gal (unit) - Wikipedia

    en.wikipedia.org/wiki/Gal_(unit)

    The acceleration due to Earth's gravity at its surface is 976 to 983 Gal, the variation being due mainly to differences in latitude and elevation. Standard gravity is 980.665 Gal. Mountains and masses of lesser density within the Earth's crust typically cause variations in gravitational acceleration of tens to hundreds of milligals (mGal).