enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...

  3. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    The distribution is said to be left-skewed, left-tailed, or skewed to the left, despite the fact that the curve itself appears to be skewed or leaning to the right; left instead refers to the left tail being drawn out and, often, the mean being skewed to the left of a typical center of the data. A left-skewed distribution usually appears as a ...

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  5. Leakage (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Leakage_(machine_learning)

    In statistics and machine learning, leakage (also known as data leakage or target leakage) is the use of information in the model training process which would not be expected to be available at prediction time, causing the predictive scores (metrics) to overestimate the model's utility when run in a production environment.

  6. Albumentations - Wikipedia

    en.wikipedia.org/wiki/Albumentations

    Data augmentation is a technique that involves artificially expanding the size of a dataset by creating new images through various transformations such as rotation, scaling, flipping, and color adjustments. This process helps improve the performance of machine learning models by providing a more diverse set of training examples.

  7. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. It is named after the engineer-turned-biostatistician Charles P. Winsor (1895–1951). The effect is the same as clipping in signal processing.

  8. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  9. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.