Search results
Results from the WOW.Com Content Network
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
Dissecting the right triangle along its altitude h yields two similar triangles, which can be augmented and arranged in two alternative ways into a larger right triangle with perpendicular sides of lengths p + h and q + h. One such arrangement requires a square of area h 2 to complete it, the other a rectangle of area pq. Since both ...
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base.
The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.
Height is normal to the plane formed by the length and width. Height is also used as a name for some more abstract definitions. These include: The height or altitude of a triangle, which is the length from a vertex of a triangle to the line formed by the opposite side; The height of a pyramid, which is the smallest distance from the apex to the ...
The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle, then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle.
Fig. 5 – An acute triangle with perpendicular. The altitude through vertex C is a segment perpendicular to side c. The distance from the foot of the altitude to vertex A plus the distance from the foot of the altitude to vertex B is equal to the length of side c (see Fig. 5).
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]