enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]

  3. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    This increases to 3.57 with a heat transfer surface temperature of 100 °C (212 °F) (viscosity 2.82 × 10 −4 Pa.s), making a significant difference to the Nusselt number and the heat transfer coefficient.

  4. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger. For a given heat exchanger with constant area and heat transfer coefficient, the larger the LMTD, the more heat is transferred.

  5. Cooling load temperature difference calculation method

    en.wikipedia.org/wiki/Cooling_load_temperature...

    This coefficient accounts for the time lag between the outdoor and indoor temperature peaks. Depending on the properties of the building envelope, a delay is present when observing the amount of heat being transferred inside from the outdoors. The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5]

  6. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  7. Stanton number - Wikipedia

    en.wikipedia.org/wiki/Stanton_number

    The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.

  8. Biot number - Wikipedia

    en.wikipedia.org/wiki/Biot_number

    The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body.

  9. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    Heat transfer may be a result of a constant heat flux or constant surface temperature. Constant heat flux may be caused by joule heating from a heat source, like heat tape, wrapped around the pipe. [13] Constant temperature conditions may be produced by a phase transition, such as condensation of saturated steam on a pipe surface. [14]