Search results
Results from the WOW.Com Content Network
The magnitude of an intensive quantity does not depend on the size, or extent, of the object or system of which the quantity is a property, whereas magnitudes of an extensive quantity are additive for parts of an entity or subsystems. Thus, magnitude does depend on the extent of the entity or system in the case of extensive quantity.
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...
Measure for the ease with which an object resists conduction of heat K/W L −2 M −1 T 3 Θ: extensive Thermal resistivity R λ: Measure for the ease with which a material resists conduction of heat K⋅m/W L −1 M −1 T 3 Θ: intensive Viscosity: η: The measure of the internal friction in a fluid Pa⋅s L-1 M T-1: intensive, scalar Volume: V
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. [1] [2] In other words, measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind. [3]
A unit of measurement, or unit of measure, is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. [1] Any other quantity of that kind can be expressed as a multiple of the unit of measurement. [2] For example, a length is a physical quantity.
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. [1] [2] [3] Some standard textbooks [4] define weight as a vector quantity, the gravitational force acting on ...
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant, which has a fixed numerical value, but does not directly involve any physical measurement.