Search results
Results from the WOW.Com Content Network
There are cis-regulatory and trans-regulatory elements. Cis-regulatory elements are often binding sites for one or more trans-acting factors. To summarize, cis-regulatory elements are present on the same molecule of DNA as the gene they regulate whereas trans-regulatory elements can regulate genes distant from the gene from which they were ...
The first step in initiation is formation of the pre-initiation complex, 48S PIC. The small ribosomal subunit and various eukaryotic initiation factors are recruited to the mRNA 5′ TL and to form the 48S PIC complex, which scans 5′ to 3′ along the mRNA transcript, inspecting each successive triplet for a functional start codon.
Trans-acting factors in alternative splicing in mRNA. Alternative splicing is a key mechanism that is involved in gene expression regulation. In the alternative splicing, trans-acting factors such as SR protein, hnRNP and snRNP control this mechanism by acting in trans. SR protein promotes the spliceosome assembly by interacting with snRNP(e.g. U1, U2) and splicing factors(e.g. U2AF65), and it ...
It may be considered the opposite of cis-acting (cis-regulatory, cis-regulation), which, in general, means "acting from the same molecule" (i.e., intramolecular). In the context of transcription regulation, a trans-acting factor is usually a regulatory protein that binds to DNA. [1]
These cis- and trans-acting elements, along with miRNAs, offer a virtually limitless range of control possibilities within a single mRNA. [7] Future research through the increased use of deep-sequencing based ribosome profiling will reveal more regulatory subtleties as well as new control elements and AUBPs.
Genetic regulatory circuits (also referred to as transcriptional regulatory circuits) is a concept that evolved from the Operon Model discovered by François Jacob and Jacques Monod. [1] [2] [3] They are functional clusters of genes that impact each other's expression through inducible transcription factors and cis-regulatory elements. [4] [5]
Some cis eQTLs are detected in many tissue types but the majority of trans eQTLs are tissue-dependent (dynamic). [10] eQTLs may act in cis (locally) or trans (at a distance) to a gene. [11] The abundance of a gene transcript is directly modified by polymorphism in regulatory elements. Consequently, transcript abundance might be considered as a ...
A documented case of cis-NATs being involved in human disease comes from an inherited form of α-thalassemia where there is silencing of the hemoglobin α-2 gene through the action of a cis-NAT. [4] It is thought that in malignant cancer cells with activated transposable elements creates a large amount of transcriptional noise. [ 4 ]