Search results
Results from the WOW.Com Content Network
Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope .
Crest and trough in a wave. A Crest point on a wave is the highest point of the wave. A crest is a point on a surface wave where the displacement of the medium is at a maximum. A trough is the opposite of a crest, so the minimum or lowest point of the wave.
In these cases, the waveform is an attribute that is independent of the frequency, amplitude, or phase shift of the signal. The waveform of an electrical signal can be visualized in an oscilloscope or any other device that can capture and plot its value at various times, with suitable scales in the time and value axes.
Amplitude is the size (magnitude) of the pressure variations in a sound wave, and primarily determines the loudness with which the sound is perceived. In a sinusoidal function such as C sin ( 2 π f t ) {\displaystyle C\sin(2\pi ft)} , C represents the amplitude of the sound wave.
When two waves with the same amplitude and frequency traveling in opposite directions superpose each other, then a standing wave pattern is created. On a plucked string, the superimposing waves are the waves reflected from the fixed endpoints of the string.
Increase of amplitude as damping decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator. [1] [2]Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its natural frequency.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().