enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  3. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =. We first verify that the right hand side ( Y {\displaystyle Y} ) satisfies X Y = I {\displaystyle XY=I} .

  4. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    A matrix with entries in a field is invertible precisely if its determinant is nonzero. This follows from the multiplicativity of the determinant and the formula for the inverse involving the adjugate matrix mentioned below. In this event, the determinant of the inverse matrix is given by

  6. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

  7. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix having a multiplicative inverse, that is, a matrix B such that AB = BA = I. Invertible matrices form the general linear group. Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have ...

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using general inversion algorithms or by performing inverse operations (that have obvious geometric interpretation, like rotating ...

  9. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    If A is invertible, the Schur complement of the block A of the matrix M is the q × q matrix defined by /:=. In the case that A or D is singular, substituting a generalized inverse for the inverses on M/A and M/D yields the generalized Schur complement.