Search results
Results from the WOW.Com Content Network
Nucleic acid NMR is the use of NMR spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA. As of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy. [2] Nucleic acid NMR uses similar techniques as protein NMR, but has several differences.
The first of these is by X-ray crystallography, starting in 1958 when the crystal structure of myoglobin was determined. The second method is by NMR, which began in the 1980s when Kurt Wüthrich outlined the framework for NMR structure determination of proteins and solved the structure of small globular proteins. [5]
[3] [4] Contrary to X-ray, single crystals are not necessary with solid-state NMR and structural information can be obtained from high-resolution spectra of disordered solids. [5] E.g. polymorphism is an area of interest for NMR crystallography since this is encountered occasionally (and may often be previously undiscovered) in organic ...
X-ray crystallography is still the primary method for characterizing the atomic structure of materials and in differentiating materials that appear similar in other experiments. X-ray crystal structures can also help explain unusual electronic or elastic properties of a material, shed light on chemical interactions and processes, or serve as ...
SAXS (small-angle x-ray scattering) is a rapidly growing area of structure determination, both as a source of approximate 3D structure for initial or difficult cases and as a component of hybrid-method structure determination when combined with NMR, EM, crystallographic, cross-linking, or computational information.
A common goal of these investigations is to obtain high resolution 3-dimensional structures of the protein, similar to what can be achieved by X-ray crystallography. In contrast to X-ray crystallography, NMR spectroscopy is usually limited to proteins smaller than 35 kDa, although larger structures have been solved. NMR spectroscopy is often ...
It is used in the fields of X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins (NMR) analysis. [1] X-PLOR is a highly sophisticated program that provides an interface between theoretical foundations and experimental data in structural biology, with specific emphasis on X-ray crystallography and nuclear magnetic ...
A set of conformations, determined by NMR or X-ray crystallography may be a better representation of the experimental data of a protein than a unique conformation. [23] The utility of a model will be given, at least in part, by the degree of accuracy and precision of the model.