Search results
Results from the WOW.Com Content Network
Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors.
Diffraction, the apparent bending and spreading of light waves when they meet an obstruction; Dispersion; Double refraction or birefringence of calcite and other minerals; Double-slit experiment; Electroluminescence; Evanescent wave; Fluorescence, also called luminescence or photoluminescence; Mie scattering (Why clouds are white) Metamerism as ...
Diffuse reflection is the reflection of light or other waves or particles from a surface such that a ray incident on the surface is scattered at many angles rather than at just one angle as in the case of specular reflection.
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. [ 1 ] The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by ...
Reflection and transmission of light waves occur because the frequencies of the light waves do not match the natural resonant frequencies of vibration of the objects. When infrared light of these frequencies strikes an object, the energy is reflected or transmitted.
The last-mentioned relation, however, will make it convenient to derive the reflection coefficients in terms of the wave admittance Y, which is the reciprocal of the wave impedance Z. In the case of uniform plane sinusoidal waves, the wave impedance or admittance is known as the intrinsic impedance or admittance of the medium.
Light waves change phase by 180° when they reflect from the surface of a medium with higher refractive index than that of the medium in which they are travelling. [1] A light wave travelling in air that is reflected by a glass barrier will undergo a 180° phase change, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.