Search results
Results from the WOW.Com Content Network
Structural model at atomic resolution of bacteriophage T4 [1] The structure of a typical myovirus bacteriophage Anatomy and infection cycle of bacteriophage T4. A bacteriophage (/ b æ k ˈ t ɪər i oʊ f eɪ dʒ /), also known informally as a phage (/ ˈ f eɪ dʒ /), is a virus that infects and replicates within bacteria and archaea.
After Benzer demonstrated the power of the T4 rII system for exploring the fine structure of the gene, others adapted the system to explore related problems.For example, Francis Crick and others used one of the peculiar r mutants Benzer had found (a deletion that fused the A and B cistrons of rII) to demonstrate the triplet nature of the genetic code.
However, some tailed bacteriophage genomes can vary quite significantly in nucleotide sequence, even among the same genus. Due to their characteristic structure and possession of potentially homologous genes, it is believed these bacteriophages possess a common origin.
The prokaryotic cell is shown with its DNA, in green. 2. The bacteriophage attaches and releases its DNA, shown in red, into the prokaryotic cell. 3. The phage DNA then moves through the cell to the host's DNA. 4. The phage DNA integrates itself into the host cell's DNA, creating prophage. 5. The prophage then remains dormant until the host ...
The remaining part of the membrane is degraded and then DNA from the head of the virus can travel through the tail tube and enter the E. coli cell. [ citation needed ] In 1952, Hershey and Chase [ 19 ] provided key evidence that the phage DNA, as distinct from protein, enters the host bacterial cell upon infection and is thus the genetic ...
Schematic drawing of a Φ29 phage virion (cross section and side view). The structure of Φ29 is composed of seven main proteins: the terminal protein (p3), the head or capsid protein (p8), the head or capsid fiber protein (p8.5), the distal tail knob (p9), the portal or connector protein (p10), the tail tube or lower collar proteins (p11), and the tail fibers or appendage proteins (p12*).
Genome of the bacteriophage ΦX174 showing its 11 genes [10] This bacteriophage has a [+] sense circular single-stranded DNA genome of 5,386 nucleotides. [10] The genome GC-content is 44% and 95% of nucleotides belong to coding genes. Because of the balance base pattern of the genome, it is used as the control DNA for Illumina sequencers.
In a 1945 study by Demerec and Fano, [4] T7 was used to describe one of the seven phage types (T1 to T7) that grow lytically on Escherichia coli. [5] Although all seven phages were numbered arbitrarily, phages with odd numbers, or T-odd phages, were later discovered to share morphological and biochemical features that distinguish them from T-even phages. [6]