Search results
Results from the WOW.Com Content Network
Bit twiddling, bit fiddling, bit bashing, and bit gymnastics are often used interchangeably with bit manipulation, but sometimes exclusively refer to clever or non-obvious ways or uses of bit manipulation, or tedious or challenging low-level device control data manipulation tasks. The term bit twiddling dates from early computing hardware ...
For example, when shifting a 32 bit unsigned integer, a shift amount of 32 or higher would be undefined. Example: If the variable ch contains the bit pattern 11100101, then ch >> 1 will produce the result 01110010, and ch >> 2 will produce 00111001. Here blank spaces are generated simultaneously on the left when the bits are shifted to the right.
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor. Most bitwise operations are presented as two-operand ...
When the value of the mask is broken down into binary (0s and 1s), the results determine which address bits are to be considered in processing the traffic. A 0-bit indicates that the address bit must be considered (exact match); a 1-bit in the mask is a "don't care". This table further explains the concept.
In all single-bit shift operations, the bit shifted out of the operand appears on carry-out; the value of the bit shifted into the operand depends on the type of shift. Arithmetic shift: the operand is treated as a two's complement integer, meaning that the most significant bit is a "sign" bit and is preserved.
Bit banging allows a device to implement different protocols with minimal or no hardware changes. In some cases, bit banging is made feasible by newer, faster processors, as modern hardware operates much more quickly than the hardware used when standard communication protocols were created.
Bit manipulation instructions sets (BMI sets) are extensions to the x86 instruction set architecture for microprocessors from Intel and AMD. The purpose of these instruction sets is to improve the speed of bit manipulation. All the instructions in these sets are non-SIMD and operate only on general-purpose registers.
Permute (and Shuffle) instructions, part of bit manipulation as well as vector processing, copy unaltered contents from a source array to a destination array, where the indices are specified by a second source array. [1] The size (bitwidth) of the source elements is not restricted but remains the same as the destination size.