enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luhn algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_algorithm

    Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]

  3. Check digit - Wikipedia

    en.wikipedia.org/wiki/Check_digit

    Take the remainder of the result divided by 10 (i.e. the modulo 10 operation). If the remainder is equal to 0 then use 0 as the check digit, and if not 0 subtract the remainder from 10 to derive the check digit. A GS1 check digit calculator and detailed documentation is online at GS1's website. [5]

  4. Luhn mod N algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_mod_N_algorithm

    Luhn mod. N. algorithm. The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any ...

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In chemistry, the last digit of the CAS registry number (a unique identifying number for each chemical compound) is a check digit, which is calculated by taking the last digit of the first two parts of the CAS registry number times 1, the previous digit times 2, the previous digit times 3 etc., adding all these up and computing the sum modulo 10.

  6. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445. Note that b is only one digit in length and that e is only two digits in length, but the value b e is 8 digits in length. In strong cryptography, b is often at least 1024 bits. [1]

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  8. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    Fletcher's checksum. The Fletcher checksum is an algorithm for computing a position-dependent checksum devised by John G. Fletcher (1934–2012) at Lawrence Livermore Labs in the late 1970s. [1] The objective of the Fletcher checksum was to provide error-detection properties approaching those of a cyclic redundancy check but with the lower ...

  9. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF (2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the coefficients of a ...