enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    Numerical differentiation. Use of numerical analysis to estimate derivatives of functions. Finite difference estimation of derivative. In numerical analysis, numerical differentiation algorithms estimate the derivative of a mathematical function or function subroutine using values of the function and perhaps other knowledge about the function.

  3. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Definition. The Laplace operator is a second-order differential operator in the n -dimensional Euclidean space, defined as the divergence ( ) of the gradient ( ). Thus if is a twice-differentiable real-valued function, then the Laplacian of is the real-valued function defined by: {\displaystyle \Delta f=\nabla ^ {2}f=\nabla \cdot \nabla f}

  4. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a quadratic function is constant. In calculus, the second derivative, or the second-order derivative, of a function f is the derivative of the derivative of f. Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the second derivative of the position of an object ...

  5. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    In mathematics and computer algebra, automatic differentiation (auto-differentiation, autodiff, or AD), also called algorithmic differentiation, computational differentiation, [1][2] is a set of techniques to evaluate the partial derivative of a function specified by a computer program. Automatic differentiation exploits the fact that every ...

  6. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    Symmetry of second derivatives. In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) is the fact that exchanging the order of partial derivatives of a multivariate function. … n {\displaystyle f\left (x_ {1},\,x_ {2},\,\ldots ,\,x_ {n}\right)} does not change the result if some continuity conditions ...

  7. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  8. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  9. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.