enow.com Web Search

  1. Ad

    related to: how to find the remainder in excel table with 4 different elements in order

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.

  3. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  4. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gk ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  7. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The following table shows how the extended Euclidean algorithm proceeds with input 240 and 46. The greatest common divisor is the last non zero entry, 2 in the column "remainder". The computation stops at row 6, because the remainder in it is 0. Bézout coefficients appear in the last two columns of the second-to-last row.

  8. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    [4] In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder. The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division.

  9. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    logarithm {\displaystyle \scriptstyle {\text {logarithm}}} v. t. e. Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.

  1. Ad

    related to: how to find the remainder in excel table with 4 different elements in order