Search results
Results from the WOW.Com Content Network
The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .
The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}
In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...
The envelope of the tangent planes to M along a curve c is a surface with vanishing Gaussian curvature, which by Minding's theorem, must be locally isometric to the Euclidean plane. This identification allows parallel transport to be defined, because in the Euclidean plane all tangent planes are identified with the space itself.
It can be defined geometrically as the Gaussian curvature of the surface which has the plane σ p as a tangent plane at p, obtained from geodesics which start at p in the directions of σ p (in other words, the image of σ p under the exponential map at p). The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the ...
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
The Gaussian curvature of the ruled surface vanishes if and only if u t and v are proportional, [47] This condition is equivalent to the surface being the envelope of the planes along the curve containing the tangent vector v and the orthogonal vector u, i.e. to the surface being developable along the curve. [48]
Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane. The boundary E 3 is therefore the empty set. Indeed, consider a point in the plane, say (x 0,y 0). This point lies on a tangent line if and only if there exists a t such that