Search results
Results from the WOW.Com Content Network
[a] The encoding is variable-length as code points are encoded with one or two 16-bit code units. UTF-16 arose from an earlier obsolete fixed-width 16-bit encoding now known as UCS-2 (for 2-byte Universal Character Set), [1] [2] once it became clear that more than 2 16 (65,536) code points were needed, [3] including most emoji and important CJK ...
As of Unicode version 16.0, there are 155,063 characters with code points, covering 168 modern and historical scripts, as well as multiple symbol sets.This article includes the 1,062 characters in the Multilingual European Character Set 2 subset, and some additional related characters.
The UCS includes 2048 code points in the Basic Multilingual Plane (BMP) for surrogate code point pairs. Together these surrogates allow any code point in the sixteen other planes to be addressed by using two surrogate code points. This provides a simple built-in method for encoding the 20.1 bit UCS within a 16 bit encoding such as UTF-16.
All code points in the BMP are accessed as a single code unit in UTF-16 encoding and can be encoded in one, two or three bytes in UTF-8. Code points in planes 1 through 16 (the supplementary planes) are accessed as surrogate pairs in UTF-16 and encoded in four bytes in UTF-8.
A range of code points in the S (Special) Zone of the BMP remains unassigned to characters. UCS-2 disallows use of code values for these code points, but UTF-16 allows their use in pairs. Unicode also adopted UTF-16, but in Unicode terminology, the high-half zone elements become "high surrogates" and the low-half zone elements become "low ...
UTF-8, UTF-16, UTF-32 and UTF-EBCDIC have these important properties but UTF-7 and GB 18030 do not. Fixed-size characters can be helpful, but even if there is a fixed byte count per code point (as in UTF-32), there is not a fixed byte count per displayed character due to combining characters. Considering these incompatibilities and other quirks ...
A code point is represented by a sequence of code units. The mapping is defined by the encoding. Thus, the number of code units required to represent a code point depends on the encoding: UTF-8: code points map to a sequence of one, two, three or four code units. UTF-16: code units are twice as long as 8-bit code units.
The number of code points in each block must be a multiple of 16. A block may contain code points that are reserved, not-assigned, etc. Each character that is assigned, has a single "block name" value from the 338 names assigned as of Unicode version 16.0. Unassigned code points outside of an existing block have the default value "No_block".