enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    A measure of disorder; the higher the entropy the greater the disorder. [5] In thermodynamics, a parameter representing the state of disorder of a system at the atomic, ionic, or molecular level; the greater the disorder the higher the entropy. [6] A measure of disorder in the universe or of the unavailability of the energy in a system to do ...

  3. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Energy supplied at a higher temperature (i.e. with low entropy) tends to be more useful than the same amount of energy available at a lower temperature. Mixing a hot parcel of a fluid with a cold one produces a parcel of intermediate temperature, in which the overall increase in entropy represents a "loss" that can never be replaced.

  4. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    This occurs spontaneously because the energy or mass transferred from the system to its surroundings results in a higher entropy in the surroundings, that is, it results in higher overall entropy of the system plus its surroundings. Note that this transfer of entropy requires dis-equilibrium in properties, such as a temperature difference.

  5. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Fig.2 Temperatureentropy diagram of nitrogen. The red curve at the left is the melting curve. The red dome represents the two-phase region with the low-entropy side the saturated liquid and the high-entropy side the saturated gas. The black curves give the TS relation along isobars. The pressures are indicated in bar.

  6. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    At absolute zero temperature, the system is in the state with the minimum thermal energy, the ground state. The constant value (not necessarily zero) of entropy at this point is called the residual entropy of the system. With the exception of non-crystalline solids (e.g. glass) the residual entropy of a system is typically close to zero. [2]

  7. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  8. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    The third law has many formulations, some more general than others, some equivalent, and some neither more general nor equivalent. [3] The Planck statement applies only to perfect crystalline substances: As temperature falls to zero, the entropy of any pure crystalline substance tends to a universal constant.

  9. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The absolute entropy (S) of a system may be determined using the third law of thermodynamics, which specifies that the entropy of all perfectly crystalline substances is zero at the absolute zero of temperature. [4] The entropy at another temperature is then equal to the increase in entropy on heating the system reversibly from absolute zero to ...