enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    The Chézy Formula is a semi-empirical resistance equation [1] [2] which estimates mean flow velocity in open channel conduits. [3] The relationship was conceptualized and developed in 1768 by French physicist and engineer Antoine de Chézy (1718–1798) while designing Paris's water canal system.

  3. Antoine de Chézy - Wikipedia

    en.wikipedia.org/wiki/Antoine_de_Chézy

    The Chézy equation is a pioneering formula in the field of fluid mechanics, and was expanded and modified by Irish engineer Robert Manning in 1889 [1] as the Manning formula. The Chézy formula concerns the velocity of water flowing through conduits and is widely celebrated for its use in open channel flow calculations. [ 2 ]

  4. Robert Manning (engineer) - Wikipedia

    en.wikipedia.org/wiki/Robert_Manning_(engineer)

    In 1885, Manning gave the value of 2/3 and wrote his formula as follows: V = C R 2 / 3 S 1 / 2 {\displaystyle V=CR^{2/3}S^{1/2}} In a letter to Flamant, Manning stated: "The reciprocal of C corresponds closely with that of n, as determined by Ganguillet and Kutter; both C and n being constant for the same channel."

  5. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.

  6. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Equation is a form of the Kutta–Joukowski theorem. Kuethe and Schetzer state the Kutta–Joukowski theorem as follows: [ 5 ] The force per unit length acting on a right cylinder of any cross section whatsoever is equal to ρ ∞ V ∞ Γ {\displaystyle \rho _{\infty }V_{\infty }\Gamma } and is perpendicular to the direction of V ∞ ...

  7. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    All are implicit methods, have order 2s − 2 and they all have c 1 = 0 and c s = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages.

  8. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  9. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α 2 = 3/8) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages: