Search results
Results from the WOW.Com Content Network
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [l] is defined as the linear part of the change in the functional, and the second variation [m] is defined as the quadratic part. [22]
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .
Inverse proportionality with product x y = 1 . Two variables are inversely proportional (also called varying inversely, in inverse variation, in inverse proportion) [2] if each of the variables is directly proportional to the multiplicative inverse (reciprocal) of the other, or equivalently if their product is a constant. [3]
The solution to the brachistochrone problem is the cycloid. An example of an application of the Beltrami identity is the brachistochrone problem , which involves finding the curve y = y ( x ) {\displaystyle y=y(x)} that minimizes the integral
A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).