enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...

  4. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    One measure of goodness of fit is the coefficient of determination, often denoted, R 2. In ordinary least squares with an intercept, it ranges between 0 and 1. However, an R 2 close to 1 does not guarantee that the model fits the data well.

  5. Nico Nagelkerke - Wikipedia

    en.wikipedia.org/wiki/Nico_Nagelkerke

    He is well known in epidemiology thanks to his invention of what is now known as the "Nagelkerke R2", which is one of a number of generalisations of the coefficient of determination from linear regression to logistic regression, see Pseudo-R-squared, Coefficient of determination, Logistic regression.

  6. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  7. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  8. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    Then, calculate the VIF factor for ^ with the following formula : = where R 2 i is the coefficient of determination of the regression equation in step one, with on the left hand side, and all other predictor variables (all the other X variables) on the right hand side.

  9. Proportionate reduction of error - Wikipedia

    en.wikipedia.org/wiki/Proportionate_reduction_of...

    The coefficient of determination then becomes = = and is the fraction of variance of that is explained by . Its square root is Pearson's product-moment correlation r {\displaystyle r} . There are several other correlation coefficients that have PRE interpretation and are used for variables of different scales: