Search results
Results from the WOW.Com Content Network
The capillary length or capillary constant is a length scaling factor that ... one can rearrange to find the capillary length. [2] In the case of a fluid–fluid ...
The capillary length is a length scaling factor that relates gravity, density, and surface tension, and is directly responsible for the shape a droplet for a specific fluid will take. The capillary length stems from the Laplace pressure, using the radius of the droplet. Using the capillary length we can define microdrops and macrodrops.
Capillary action is one of the most common fluid mechanical effects explored in the field of microfluidics. Jurin's law is named after James Jurin, who discovered it between 1718 and 1719. [2] His quantitative law suggests that the maximum height of liquid in a capillary tube is inversely proportional to the tube's diameter.
In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a
The brain has a built-in waste removal process - the glymphatic system - that circulates fluid in the brain and spinal cord to clear out waste, according to the scientists.
Alongside the capillary number, commonly denoted , which represents the contribution of viscous drag, is useful for studying the movement of fluid in porous or granular media, such as soil. [1] The Bond number (or Eötvös number) is also used (together with Morton number ) to characterize the shape of bubbles or drops moving in a surrounding ...