Search results
Results from the WOW.Com Content Network
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
Position of some special triangles in an Euler diagram of types of triangles, using the definition that isosceles triangles have at least two equal sides, i.e. equilateral triangles are isosceles. A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
In the latter double inequality, the first part holds with equality if and only if the triangle is isosceles with an apex angle of at least 60°, and the last part holds with equality if and only if the triangle is isosceles with an apex angle of at most 60°. Thus both are equalities if and only if the triangle is equilateral. [7]: Thm. 1
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Napoleon's theorem: If the triangles centered on L, M, N are equilateral, then so is the green triangle.. In geometry, Napoleon's theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centres of those equilateral triangles themselves form an equilateral triangle.
The three triangles XBC, YCA, ZAB erected over the sides of the triangle ABC need not be isosceles for the three lines AX, BY, CZ to be concurrent. [ 5 ] If similar triangles XBC , AYC , ABZ are constructed outwardly on the sides of any triangle ABC then the lines AX, BY, CZ are concurrent.