Search results
Results from the WOW.Com Content Network
Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata.
The L* algorithm and its generalizations have significant implications in the field of automata theory and formal language learning, as they demonstrate the feasibility of efficiently learning more expressive automata models, such as NFA and AFA, which can represent languages more concisely and capture more complex patterns compared to ...
These abstract machines are called automata. Automata comes from the Greek word (Αυτόματα) which means that something is doing something by itself. Automata theory is also closely related to formal language theory, [5] as the automata are often classified by the class of formal languages they are able to recognize. An automaton can be a ...
A DFA for that language has at least 16 states. In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if each of its transitions is uniquely determined by its source state and input symbol, and; reading an input symbol is required for each state transition.
The field of formal language theory studies primarily the purely syntactic aspects of such languages—that is, their internal structural patterns. Formal language theory sprang out of linguistics, as a way of understanding the syntactic regularities of natural languages .
The forerunner of this book appeared under the title Formal Languages and Their Relation to Automata in 1968. Forming a basis both for the creation of courses on the topic, as well as for further research, that book shaped the field of automata theory for over a decade, cf. (Hopcroft 1989).
[2] [3] In this view, language is regarded as arising from a mathematical relationship between meaning and form. The formal description of language was further developed by linguists including J. R. Firth and Simon Dik, giving rise to modern grammatical frameworks such as systemic functional linguistics and functional discourse grammar.
A formal language is p-regular (also: a pure-group language) if it is accepted by a permutation automaton. For example, the set of strings of even length forms a p-regular language: it may be accepted by a permutation automaton with two states in which every transition replaces one state by the other.