enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.

  3. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).

  4. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Cramer's rule is an explicit formula for the solution of a system of linear equations, with each variable given by a quotient of two determinants. [9]

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.

  6. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    By subtraction of the two given equations one gets the line equation: ) + = + + ... The linear system can be solved by Cramer's rule. The intersection points are (− ...

  7. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and determinants can be used to solve these equations (Cramer's rule), although other methods of solution are computationally much more

  8. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The total derivatives are found by totally differentiating the system of equations, dividing through by, say dr, treating dq / dr and dp / dr as the unknowns, setting dI = dw = 0, and solving the two totally differentiated equations simultaneously, typically by using Cramer's rule.

  9. Flow graph (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_graph_(mathematics)

    Consistency and independence of the equations in the set is established because the determinant of coefficients is non-zero, so a solution can be found using Cramer's rule. Using the examples from the subsection Elements of signal-flow graphs, we construct the graph In the figure, a signal-flow graph in this case.