enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix factorization (algebra) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_(algebra)

    For a commutative ring and an element , a matrix factorization of is a pair of n-by-n matrices , such that =. This can be encoded more generally as a Z / 2 {\displaystyle \mathbb {Z} /2} - graded S {\displaystyle S} -module M = M 0 ⊕ M 1 {\displaystyle M=M_{0}\oplus M_{1}} with an endomorphism

  3. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    Matrix completion of a partially revealed 5 by 5 matrix with rank-1. Left: observed incomplete matrix; Right: matrix completion result. Matrix completion is the task of filling in the missing entries of a partially observed matrix, which is equivalent to performing data imputation in statistics. A wide range of datasets are naturally organized ...

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are ...

  5. Matrix factorization (recommender systems) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization...

    Matrix factorization algorithms work by decomposing the user-item interaction matrix into the product of two lower dimensionality rectangular matrices. [1] This family of methods became widely known during the Netflix prize challenge due to its effectiveness as reported by Simon Funk in his 2006 blog post, [ 2 ] where he shared his findings ...

  6. Matrix factorization of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_of_a...

    In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as AB = pI , where A and B are square matrices and I is the identity matrix . [ 1 ]

  7. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Frequently used examples include the Schatten p-norms, with p = 1 or 2. For example, matrix regularization with a Schatten 1-norm, also called the nuclear norm, can be used to enforce sparsity in the spectrum of a matrix. This has been used in the context of matrix completion when the matrix in question is believed to have a restricted rank. [2]

  8. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Non-negative matrix factorization (NMF or NNMF), also non-negative matrix approximation [1] [2] is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting ...

  9. Incomplete LU factorization - Wikipedia

    en.wikipedia.org/wiki/Incomplete_LU_factorization

    A common choice is to use the sparsity pattern of A 2 instead of A; this matrix is appreciably more dense than A, but still sparse over all. This preconditioner is called ILU(1). One can then generalize this procedure; the ILU(k) preconditioner of a matrix A is the incomplete LU factorization with the sparsity pattern of the matrix A k+1.