enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    The cutoff frequency when expressed as an angular frequency (=) is simply the reciprocal of the time constant. Short conditional equations using the value for / (): f c in Hz = 159155 / τ in μs τ in μs = 159155 / f c in Hz. Other useful equations are:

  3. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    The equation is a good approximation if d is small compared to the other dimensions of the plates so that the electric field in the capacitor area is uniform, and the so-called fringing field around the periphery provides only a small contribution to the capacitance. Combining the equation for capacitance with the above equation for the energy ...

  4. LC circuit - Wikipedia

    en.wikipedia.org/wiki/LC_circuit

    The natural frequency (that is, the frequency at which it will oscillate when isolated from any other system, as described above) is determined by the capacitance and inductance values. In most applications the tuned circuit is part of a larger circuit which applies alternating current to it, driving continuous oscillations.

  5. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    The formula for capacitance in a parallel plate capacitor is written as C = ε A d {\displaystyle C=\varepsilon \ {\frac {A}{d}}} where A {\displaystyle A} is the area of one plate, d {\displaystyle d} is the distance between the plates, and ε {\displaystyle \varepsilon } is the permittivity of the medium between the two plates.

  6. Quantum LC circuit - Wikipedia

    en.wikipedia.org/wiki/Quantum_LC_circuit

    Like the one-dimensional harmonic oscillator problem, an LC circuit can be quantized by either solving the Schrödinger equation or using creation and annihilation operators. The energy stored in the inductor can be looked at as a "kinetic energy term" and the energy stored in the capacitor can be looked at as a "potential energy term".

  7. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    This results in the linear differential equation + =, where C is the capacitance of the capacitor. Solving this equation for V yields the formula for exponential decay: =, where V 0 is the capacitor voltage at time t = 0.

  8. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  9. Parasitic capacitance - Wikipedia

    en.wikipedia.org/wiki/Parasitic_capacitance

    In all inductors, the parasitic capacitance will resonate with the inductance at some high frequency to make the inductor self-resonant; this is called the self-resonant frequency. Above this frequency, the inductor actually has capacitive reactance. The capacitance of the load circuit attached to the output of op amps can reduce their bandwidth.