enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  3. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    The first stage scaled, deskewed, and skeletonized the input image. The second stage was a convolutional layer with 18 hand-designed kernels. The third stage was a fully connected network with one hidden layer. The LeNet-1 architecture has 3 hidden layers (H1-H3) and an output layer. [4]

  4. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In optics, an out-of-focus photograph is a convolution of the sharp image with a lens function. The photographic term for this is bokeh. In image processing applications such as adding blurring. In digital data processing In analytical chemistry, Savitzky–Golay smoothing filters are used for the analysis of spectroscopic data.

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  6. File:DeepInsight method to transform non-image data to 2D ...

    en.wikipedia.org/wiki/File:DeepInsight_method_to...

    Furthermore, DeepInsight enables feature extraction through the application of CNN for non-image samples to seize imperative information and shown promising results. To our knowledge, this is the first work to apply CNN simultaneously on different kinds of nonimage datasets: RNA-seq, vowels, text, and artificial.

  7. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  8. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    Inception [1] is a family of convolutional neural network (CNN) for computer vision, introduced by researchers at Google in 2014 as GoogLeNet (later renamed Inception v1).). The series was historically important as an early CNN that separates the stem (data ingest), body (data processing), and head (prediction), an architectural design that persists in all modern

  9. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet architecture and a possible modification. On the top is half of the original AlexNet (which is split into two halves, one per GPU). On the bottom is the same architecture but with the last "projection" layer replaced by another one that projects to fewer outputs.