Search results
Results from the WOW.Com Content Network
A transmembrane domain (TMD, TM domain) is a membrane-spanning protein domain.TMDs may consist of one or several alpha-helices or a transmembrane beta barrel.Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues.
For example, the "unfolded" bacteriorhodopsin in SDS micelles has four transmembrane α-helices folded, while the rest of the protein is situated at the micelle-water interface and can adopt different types of non-native amphiphilic structures. Free energy differences between such detergent-denatured and native states are similar to stabilities ...
The MIP family is large and diverse, possessing thousands of members that form transmembrane channels. These channel proteins function in transporting water, small carbohydrates (e.g., glycerol), urea, NH 3, CO 2, H 2 O 2 and ions by energy-independent mechanisms.
The transmembrane domain is the smallest at around 25 amino acid residues and forms an alpha helix inserted into the membrane bilayer. The ECD is typically much larger than the ICD and is often globular, whereas many ICDs have relatively high disorder. [10] Some proteins in this class function as monomers, but dimerization or higher-order ...
Tetraspanins are a family of membrane proteins found in all multicellular eukaryotes also referred to as the transmembrane 4 superfamily (TM4SF) proteins. These proteins have four transmembrane alpha-helices and two extracellular domains, one short (called the s mall e xtracellular d omain or l oop, SED/SEL or EC1) and one longer, typically 100 ...
In molecular biology, ATP-binding domain of ABC transporters is a water-soluble domain of transmembrane ABC transporters. ABC transporters belong to the ATP-Binding Cassette superfamily, which uses the hydrolysis of ATP to translocate a variety of compounds across biological membranes. ABC transporters are minimally constituted of two conserved ...
This enzyme’s structure is tied to its function heavily. The transmembrane domain in dII formed by alpha helices lends itself well to its function as a proton channel across a membrane. The lid and fingerprint motifs used by dIII to increase affinity to NADP(H) are also examples of its structure being tied to function.
All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. [2] IMPs comprise a significant fraction of the proteins encoded in an organism's genome. [3] Proteins that cross the membrane are surrounded by annular lipids, which are defined as lipids that are in direct contact with a membrane protein.