Search results
Results from the WOW.Com Content Network
ν E = 1.19 is the normalized Euler frequency (in units of reciprocal years), C = 8.04 × 10 37 kg m 2 is the polar moment of inertia of the Earth, A is its mean equatorial moment of inertia, and C − A = 2.61 × 10 35 kg m 2. [2] [7] The observed angle between the figure axis of the Earth F and its angular momentum M is a few hundred ...
chemistry (Proportion of "active" molecules or atoms) Arrhenius number = Svante Arrhenius: chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
For instance, the Earth and the Sun can both be approximated as pointlike when considering the orbit of the former around the latter, but the Earth is not pointlike when considering activities on its surface. [note 1] The mathematical description of motion, or kinematics, is based on the idea of specifying positions using numerical coordinates ...
The Sun has by far the lowest moment of inertia factor value among Solar System bodies; it has by far the highest central density (162 g/cm 3, [3] [note 3] compared to ~13 for Earth [4] [5]) and a relatively low average density (1.41 g/cm 3 versus 5.5 for Earth).
The Earth's magnetic field protects the Earth from the deadly solar wind and has long been used for navigation. It originates in the fluid motions of the outer core. [24] The magnetic field in the upper atmosphere gives rise to the auroras. [26] Earth's dipole axis (pink line) is tilted away from the rotational axis (blue line).