Ad
related to: monoidal topology network diagram definition
Search results
Results from the WOW.Com Content Network
A monoidal category where every object has a left and right adjoint is called a rigid category. String diagrams for rigid categories can be defined as non-progressive plane graphs, i.e. the edges can bend backward. In the context of categorical quantum mechanics, this is known as the snake equation.
This is one of the diagrams used in the definition of a monoidal cateogory. It takes care of the case for when there is an instance of an identity between two objects. commutes. A strict monoidal category is one for which the natural isomorphisms α, λ and ρ are identities. Every monoidal category is monoidally equivalent to a strict monoidal ...
such that the pentagon diagram. and the unitor diagram commute. In the above notation, 1 is the identity morphism of M, I is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C. Dually, a comonoid in a monoidal category C is a monoid in the dual category C op.
In topology, a branch of mathematics, a topological monoid is a monoid object in the category of topological spaces. In other words, it is a monoid with a topology with respect to which the monoid's binary operation is continuous. Every topological group is a topological monoid.
The physical network topology can be directly represented in a network diagram, as it is simply the physical graph represented by the diagrams, with network nodes as vertices and connections as undirected or direct edges (depending on the type of connection). [3]
Hybrid topology is also known as hybrid network. [19] Hybrid networks combine two or more topologies in such a way that the resulting network does not exhibit one of the standard topologies (e.g., bus, star, ring, etc.). For example, a tree network (or star-bus network) is a hybrid topology in which star networks are interconnected via bus ...
This is a glossary of properties and concepts in category theory in mathematics. (see also Outline of category theory.). Notes on foundations: In many expositions (e.g., Vistoli), the set-theoretic issues are ignored; this means, for instance, that one does not distinguish between small and large categories and that one can arbitrarily form a localization of a category. [1]
A set S equipped with a binary operation S × S → S, which we will denote •, is a monoid if it satisfies the following two axioms: . Associativity For all a, b and c in S, the equation (a • b) • c = a • (b • c) holds.
Ad
related to: monoidal topology network diagram definition