Search results
Results from the WOW.Com Content Network
The specific power may be expressed in watts per kilogram of body mass. Active cyclists can produce from 1.0 W/kg (novice female) 2.2 W/kg (average untrained male), 3.0 W/kg (male, fair or female, good [fitness]), and 6.6 W/kg (top-class male athletes) at their functional threshold power (about one hour). 5 W/kg is about the level reachable by ...
VAM is a parameter used in cycling as a measure of fitness and speed; it is useful for relatively objective comparisons of performances and estimating a rider's power output per kilogram of body mass, which is one of the most important qualities of a cyclist who competes in stage races and other mountainous [citation needed] events. Dr.
In the sport of competitive cycling athlete's performance is increasingly being expressed in VAMs and thus as a power-to-weight ratio in W/kg. This can be measured through the use of a bicycle powermeter or calculated from measuring incline of a road climb and the rider's time to ascend it.
On some models, by default two successive switchable batteries are housed in luggage bags, here is the range specified at medium power addition of 100 km. A conventional battery (36 V / 7 Ah) (1.9 to 5.1 kg mass in a pedelec [20]) has an energy content of around 250 Wh (1 kg of gasoline has about 11,500 Wh). The conversion of electrical energy ...
Bicycle tires usually have a marking on the sidewall indicating the pressure appropriate for that tire. Bicycles use much higher pressures than cars: car tires are normally in the range of 30 to 40 pounds per square inch (210 to 280 kPa), whereas bicycle tires are normally in the range of 60 to 100 pounds per square inch (410 to 690 kPa).
For a 5% grade, each meter of road requires lifting the body weight by 5 cm. The power (watts) is equal to change in gravitational potential energy (joules) per unit time (seconds). For a 60 kilograms (130 lb) rider, the additional power needed is about 30 watts per meter/second of road speed (about 8 watts per km/hour).
Thus, an athlete performing "interval" training while using a power meter can instantly see that they are producing 300 watts, for example, instead of waiting for their heart rate to climb to a certain point. In addition, power meters measure the force that moves the bike forward multiplied by the velocity, which is the desired goal.
In the International System of Units, the unit of power is the watt, equal to one joule per second. Power is a scalar quantity. Specifying power in particular systems may require attention to other quantities; for example, the power involved in moving a ground vehicle is the product of the aerodynamic drag plus traction force on the wheels, and ...