enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or Runge–Kutta methods. A further division can be realized by dividing methods into those that are explicit and those that are implicit.

  4. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [1]

  5. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y 1 ( x ) {\displaystyle y_{1}(x)} is known and a second linearly independent solution y 2 ( x ) {\displaystyle y_{2}(x)} is desired.

  6. Numerov's method - Wikipedia

    en.wikipedia.org/wiki/Numerov's_method

    Numerov's method (also called Cowell's method) is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.

  7. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    The first Dahlquist barrier states that a zero-stable and linear q-step multistep method cannot attain an order of convergence greater than q + 1 if q is odd and greater than q + 2 if q is even. If the method is also explicit, then it cannot attain an order greater than q (Hairer, Nørsett & Wanner 1993, Thm III.3.5).

  8. Lax–Wendroff method - Wikipedia

    en.wikipedia.org/wiki/Lax–Wendroff_method

    What follows is the Richtmyer two-step Lax–Wendroff method. The first step in the Richtmyer two-step Lax–Wendroff method calculates values for f(u(x, t)) at half time steps, t n + 1/2 and half grid points, x i + 1/2. In the second step values at t n + 1 are calculated using the data for t n and t n + 1/2.

  9. Parabolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Parabolic_partial...

    A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science , quantum mechanics and financial mathematics .