Search results
Results from the WOW.Com Content Network
Gaussian processes are also commonly used to tackle numerical analysis problems such as numerical integration, solving differential equations, or optimisation in the field of probabilistic numerics. Gaussian processes can also be used in the context of mixture of experts models, for example.
This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations. This article is written from the point of view of Bayesian statistics , which may use a terminology different from the one commonly used in kriging .
In statistics, originally in geostatistics, kriging or Kriging (/ ˈ k r iː ɡ ɪ ŋ /), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. [1]
A non-trivial way to mix the latent functions is by convolving a base process with a smoothing kernel. If the base process is a Gaussian process, the convolved process is Gaussian as well. We can therefore exploit convolutions to construct covariance functions. [20] This method of producing non-separable kernels is known as process convolution.
Gaussian process approximations can often be expressed in terms of assumptions on under which and can be calculated with much lower complexity. Since these assumptions are generally not believed to reflect reality, the likelihood and the best predictor obtained in this way are not exact, but they are meant to be close to their original values.
Vecchia approximation is a Gaussian processes approximation technique originally developed by Aldo Vecchia, a statistician at United States Geological Survey. [1] It is one of the earliest attempts to use Gaussian processes in high-dimensional settings. It has since been extensively generalized giving rise to many contemporary approximations.
A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .
The most commonly used prior for is a Gaussian process prior. This is mainly due to the advantage provided by Gaussian conjugacy and the fact that Gaussian processes can encode a wide range of prior knowledge including smoothness, periodicity and sparsity through a careful choice of prior covariance.