Search results
Results from the WOW.Com Content Network
Fuzzy logic is an important concept in medical decision making. Since medical and healthcare data can be subjective or fuzzy, applications in this domain have a great potential to benefit a lot by using fuzzy-logic-based approaches. Fuzzy logic can be used in many different aspects within the medical decision making framework.
The logic that an inference engine uses is typically represented as IF-THEN rules. The general format of such rules is IF <logical expression> THEN <logical expression>. Prior to the development of expert systems and inference engines, artificial intelligence researchers focused on more powerful theorem prover environments that offered much ...
A fuzzy control system is a control system based on fuzzy logic –a mathematical system that analyzes analog input values in terms of logical variables that take on continuous values between 0 and 1, in contrast to classical or digital logic, which operates on discrete values of either 1 or 0 (true or false, respectively).
Fuzzy logic is a form of many-valued logic related ... Adaptive neuro fuzzy inference system; B. Bates's chip; BL (logic) ... Functional presence engine; Fuzzy ...
It enhances CLIPS by providing a fuzzy reasoning capability that is fully integrated with CLIPS facts and inference engine allowing one to represent and manipulate fuzzy facts and rules. FuzzyCLIPS can deal with exact, fuzzy (or inexact), and combined reasoning, allowing fuzzy and normal terms to be freely mixed in the rules and facts of an ...
Fuzzy rules are used within fuzzy logic systems to infer an output based on input variables. Modus ponens and modus tollens are the most important rules of inference. [1] A modus ponens rule is in the form Premise: x is A Implication: IF x is A THEN y is B Consequent: y is B. In crisp logic, the premise x is A can only be true or false
The engine used for automated reasoning in expert systems were typically called inference engines. ... ('fuzzy') logic and various connectionist approaches. ...
[1] [2] Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions. [3] Hence, ANFIS is considered to be a universal estimator. [4]