Search results
Results from the WOW.Com Content Network
The form of a modus ponens argument is a mixed hypothetical syllogism, with two premises and a conclusion: If P, then Q. P. Therefore, Q. The first premise is a conditional ("if–then") claim, namely that P implies Q. The second premise is an assertion that P, the antecedent of the conditional claim, is the case.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.
Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).
For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics ), in the sense that if the premises are true (under ...
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.
The logical form of this argument is known as modus ponens, [39] which is a classically valid form. [40] So, in classical logic, the argument is valid, although it may or may not be sound, depending on the meteorological facts in a given context. This example argument will be reused when explaining § Formalization.
In logic, the corresponding conditional of an argument (or derivation) is a material conditional whose antecedent is the conjunction of the argument's (or derivation's) premises and whose consequent is the argument's conclusion. An argument is valid if and only if its corresponding conditional is a logical truth.