Search results
Results from the WOW.Com Content Network
Dynamic binding (or late binding or virtual binding) is name binding performed as the program is running. [2] An example of a static binding is a direct C function call: the function referenced by the identifier cannot change at runtime. An example of dynamic binding is dynamic dispatch, as in a C++ virtual method call.
The name dynamic binding is sometimes used, [2] but is more commonly used to refer to dynamic scope. With early binding, or static binding, in an object-oriented language, the compilation phase fixes all types of variables and expressions. This is usually stored in the compiled program as an offset in a virtual method table ("v-table"). [3]
Molecular recognition can be subdivided into static molecular recognition and dynamic molecular recognition. Static molecular recognition is likened to the interaction between a key and a keyhole; it is a 1:1 type complexation reaction between a host molecule and a guest molecule to form a host–guest complex. To achieve advanced static ...
The purpose of dynamic dispatch is to defer the selection of an appropriate implementation until the run time type of a parameter (or multiple parameters) is known. Dynamic dispatch is different from late binding (also known as dynamic binding). Name binding associates a name with an operation. A polymorphic operation has several ...
Lastly, a closure is only distinct from a function with free variables when outside of the scope of the non-local variables, otherwise the defining environment and the execution environment coincide and there is nothing to distinguish these (static and dynamic binding cannot be distinguished because the names resolve to the same values).
"Scope" and "context" in particular are frequently confused: scope is a property of a name binding, while context is a property of a part of a program, that is either a portion of source code (lexical context or static context) or a portion of run time (execution context, runtime context, calling context or dynamic context).
A somewhat common misconception is that dynamic typing implies dynamic name resolution. For example, Erlang is dynamically typed but has static name resolution. However, static typing does imply static name resolution. Static name resolution catches, at compile time, use of variables that are not in scope; preventing programmer errors.
Further, static polymorphism allows greater static analysis by compilers (notably for optimization), source code analysis tools, and human readers (programmers). Dynamic polymorphism is more flexible but slower—for example, dynamic polymorphism allows duck typing, and a dynamically linked library may operate on objects without knowing their ...