Search results
Results from the WOW.Com Content Network
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system.The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden.
The heat liberated or absorbed by the process is determined from the difference between the initial electrical power and the electrical power required at the time of measurement. While power compensation calorimetry requires less preparation than heat flow calorimetry, it faces similar limitations.
The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. The calorific value is the total energy released as heat when a substance undergoes complete combustion with oxygen under standard conditions.
The equilibrium state of a thermodynamic system is described by specifying its "state". The state of a thermodynamic system is specified by a number of extensive quantities, the most familiar of which are volume, internal energy, and the amount of each constituent particle (particle numbers). Extensive parameters are properties of the entire ...
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
The enthalpy of a chemical system is essentially its energy. The enthalpy change ΔH for a reaction is equal to the heat q transferred out of (or into) a closed system at constant pressure without in- or output of electrical energy. Heat production or absorption in a chemical reaction is measured using calorimetry, e.g. with a bomb calorimeter.
A reversible heat engine with a low efficiency delivers more heat (energy) to the hot reservoir for a given amount of work (energy) to this engine when it is being driven as a heat pump. All these mean that heat can transfer from cold to hot places without external work, and such a heat transfer is impossible by the second law of thermodynamics.