enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.

  3. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  4. Patterns in nature - Wikipedia

    en.wikipedia.org/wiki/Patterns_in_nature

    Composite patterns: aphids and newly born young in arraylike clusters on sycamore leaf, divided into polygons by veins, which are avoided by the young aphids Living things like orchids, hummingbirds, and the peacock's tail have abstract designs with a beauty of form, pattern and colour that artists struggle to match. [21]

  5. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    Within that plane, every triangle, irrespective of regularity, will tessellate. In contrast, regular pentagons do not tessellate. However, irregular pentagons, with different sides and angles can tessellate. There are 15 irregular convex pentagons that tile the plane. [6] Polyhedra are the three dimensional correlates of polygons.

  6. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Regular tetrahedra alone do not tessellate (fill space), but if alternated with regular octahedra in the ratio of two tetrahedra to one octahedron, they form the alternated cubic honeycomb, which is a tessellation. Some tetrahedra that are not regular, including the Schläfli orthoscheme and the Hill tetrahedron, can tessellate.

  7. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  8. Pentomino - Wikipedia

    en.wikipedia.org/wiki/Pentomino

    The 12 pentominoes can form 18 different shapes, with 6 of them (the chiral pentominoes) being mirrored. Derived from the Greek word for '5', and "domino", a pentomino (or 5-omino) is a polyomino of order 5; that is, a polygon in the plane made of 5 equal-sized squares connected edge to edge.

  9. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    Star polygons that can only exist as spherical tilings, similarly to the monogon and digon, may exist (for example: {3/2}, {5/3}, {5/4}, {7/4}, {9/5}), however these have not been studied in detail. There also exist failed star polygons, such as the piangle, which do not cover the surface of a circle finitely many times. [8]