Search results
Results from the WOW.Com Content Network
As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.
The coefficient is −5, the indeterminates are x and y, the degree of x is two, while the degree of y is one. The degree of the entire term is the sum of the degrees of each indeterminate in it, so in this example the degree is 2 + 1 = 3. Forming a sum of several terms produces a polynomial.
However, there will be several terms of the form x n−2 y 2, one for each way of choosing exactly two binomials to contribute a y. Therefore, after combining like terms, the coefficient of x n−2 y 2 will be equal to the number of ways to choose exactly 2 elements from an n-element set.
If there are like terms in an expression, one can simplify the expression by combining the like terms. One adds the coefficients and keeps the same variable. 4 x + 7 x + 2 x = 15 x {\displaystyle 4x+7x+2x=15x}
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x 2 y 2. However, a polynomial in variables x and y, is a polynomial in x with coefficients which are polynomials in y, and also a polynomial in y with coefficients which are polynomials in x. The polynomial
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...