Search results
Results from the WOW.Com Content Network
The multiplicity of a prime factor p of n is the largest exponent m for which p m ... 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is ...
81 is: the square of 9 and the second fourth-power of a prime; 3 4. with an aliquot sum of 40; within an aliquot sequence of three composite numbers (81,40,50,43,1,0) to the Prime in the 43-aliquot tree. a perfect totient number like all powers of three. [1] a heptagonal number. [2] an icosioctagonal number. [3] a centered octagonal number. [4 ...
3 × 3 × 3 × 3, 3 × 3 × 9, 3 × 27, 9 × 9, and 81 are the five multiplicative partitions of 81 = 3 4. Because it is the fourth power of a prime , 81 has the same number (five) of multiplicative partitions as 4 does of additive partitions .
Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...
The requirement that the factors be prime is necessary: factorizations containing composite numbers may not be unique (for example, = =). This theorem is one of the main reasons why 1 is not considered a prime number : if 1 were prime, then factorization into primes would not be unique; for example, 2 = 2 ⋅ 1 = 2 ⋅ 1 ⋅ 1 ...
The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...
The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...
All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.